AI落地无线网络运维四大难题待破解
无线网络AI平台系统开发过程中的挑战主要在以下几个方面。
对于上述挑战,无线AI系统在开发时需要注意以下功能特点。一方面要考虑采用CPU+GPU+FPGA混合异购模式的高效单元,能高效进行离线数据分析和在线数据实时分析。无线AI平台需要具备对于多种不同制式不同结构类型统一处理的能力,可以快速、稳定地处理于无线业务所产生的海量的结构化、半结构化和非结构化的数据信息。 在无线业务场景中,有诸多应用需要根据平台的在线计算做出实时决策,无线AI系统需要针对无线中众多需要实时服务的业务场景,提供相应实时在线分析能力。所提供的实时分析,可以根据不同的业务需求设定为小时级、分钟级、秒级甚至是毫秒级。 另一方面要具有高性能的分布式存储能力。由于数据形式非常多样,需要结合应用场景进行数据清洗、特征提取等预处理,并根据不同结构类型的数据,定义统一的表示形式。然后根据后续业务需求,将数据分布存储到不同的服务器上,以供其他模块调用。 AI在无线网络中应用的综合挑战 除了技术层面的几个关键问题外,AI应用于无线网络还存在着硬件部署、软件开发、人才、成本等方面的问题。应用于AI处理的GPU设备大小不符合传统机房机架的尺寸,而且需要专门风扇提供散热机制,供电和部署对于通信行业都是难以解决的问题。 由于无线网络的从业人员主要是掌握的是通信体系的知识,对于软件开发及数据算法建模等知识不太了解,因此存在人才短缺和软件开发方面的困难。改造机房、购置AI处理设备、聘请专业开发人员或AI算法工程师,将会需要巨大的成本开销,对于运营商来说将是一个不小的压力。 面对这些问题,电信运营商、设备商需要勇于创新,敢啃“硬骨头”,在数据规范化、行业统一化方面行动起来,齐心协力解决共同难题。同时也要沉下心做好功课,“吃透”AI,面对技术难关不怕投入,迎难而上,终会收获回报的果实。各方还要开放心态,结合AI产业界的力量,与AI公司、互联网行业合作,共同开发平台,找到共同盈利的商业模式,优势互补,最终为全社会打造一个智能化、泛行业化、人性化的移动互联网络。 【编辑推荐】
点赞 0 (编辑:91站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |